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A very effective method is presented to solve a large set ( N 3000) of coupled transcendental 
equations numerically. We apply the method to calculate the mean production rates of nuclei 
in the statistical decay of highly excited heavy nuclei. For this case usually at most 40 iteration 
steps are needed to obtain a solution with a relative accuracy of < 10-C We demonstrate the 
method for the most severe case of a phase transition where the statistical fluctuations are 
large, causing our system of coupled mean-held equations to become unstable. 0 1986 
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1. INTRODUCTION 

We consider the problem of solving N real (transcendental) equations in N real 
unknowns in the case we know by some other (physical) arguments that only a few 
real solutions exist. A well-known method is Newton’s, provided that the functions 
involved are differentiable. But there is one drawback: in Newton’s method a N x N 
dimensional linear equation must be solved in a suitable neighborhood of the 
solution. This, of course, is difficult to implement in reasonable time if N- 3000. We 
therefore looked for other methods and tried Schechter’s nonlinear successive 
overrelaxation process [l] especially recommended by Greenspan [3]. In Section 2 
the mathematical background of Schechter’s method is given together with an 
improvement that sometimes is very useful. In Section 3 this is applied to the 
physical problem of phase transitions in heavy nuclei. 

2. MATHEMATICAL FOUNDATIONS 

The method, essentially due to Schechter [ 11, is a generalization of the technique 
of successive overrelaxation (SOR) from linear to nonlinear systems, consider the 
system 
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where fj: RN --t R are N nonlinear functions in N variables. Let fii(x) = @$Yx, # 0. 
Given a system of indices {i,} which exhaust the set { 1, 2,..., N} = Z, infinitely 
often, a sequence of real numbers {oP}, p =O, 1,2,..., and a starting guess x0, 
Schechter’s approximate relaxation process is defined by 

~,&xp+l’=xp’-w f&F, 
xp ,..., Xf$‘) 

p &(x!p), xi?..., x’,p’) 
(2.2) 

i #k:xjp+l)=x~) 
P 

where wp is in the range 

o<w,<2. 

The left-hand side of (2.1) may be written 

f:RN+RN, 

where f(x) = (f,(x), f2(74),..., fN(x)), x E RN. 

The theoretical, more interested reader will find a painstaking treatment of 
Schechter’s method in the book of Meis and Marcowitz [2, Chap. III]. Recently 
Brewster and Kannan [7] have given a new proof for the convergence of 
Schechter’s method. As they remark, if the range of the parameter wp is extended to 
op > 2, then convergence would still be possible. It should be noted that oP > 2 in 
practical applications is only useful if f(x) is convex. Especially when the starting 
point is far away from the solution will a value wp > 2 give rapid convergence. In 
contrast, the iteration process for a concaue function f(x) with op > 2 will run away 
from the solution. 

Despite the theoretical investigations, it is rarely possible to determine a priori 
when this method will converge to a solution of (2.1). The fact that a certain vector 
is a solution should always be verified by direct substitution into the given system. 
The most popular way for getting a sequence {w,} is to take op = w, constant for 
all p. A good choice for w can be determined only by experimentation in the range 
0<0<2. 

A second way to determine (op} is to generate random numbers in the interval 
Zc [O, 2); this seems never before to have been taken into consideration. The 
advantage over the first method is that no search for a suitable w is needed. 

The sequence {i,} that covers ZN infinitely often is in practice just the sequence 
1) 2 )...) N, 1) 2 )...) but it may be better to prefer some directions in RN, for example, 
N=4 and the sequence 1, 1, 1, 2, 3, 4, 4, 4, 1, 1, 1, . . . . This, of course, depends 
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heavily on the structure of (2.1). Consider the following example given by Brown 
[4, p. 310, Example 21: 

fl%x2)=+-2-1, 
f*(x,, x2)=(x,-2)2+(x2-o.5)2- 1. 

(2.3) 

The system has roots at 

r = (1.54634288, 1.39117631), 
s = (1.06734609,0.139227667). 

The starting guess was (0.1, 2.0) and a little bit of experimentation showed that 
w = 1.5 was a good choice. Then (2.2) converged to r in 29 iteration. Newton’s 
method and Brown’s method converge to s in 24 and 10 iterations. If (o,,} are 
taken to be random numbers in I= [ 1,2] then 30 or 60 iterations are needed to get 
the same result. The number of iterations depends on the initial value of the ran- 
dom number generator if the number of steps in (2.2) is small. To get the solution s 
we used the inner product deflation method described by Brown [4, p. 3313. We 
defined the following new system of equations, 

gj(x,,x2)=fj(x1,x2).(e,x-r)-' (i= 1, 2) (2.4) 

where e = (1, 1) is the unit vector and ( . , . ) denotes the inner product. The starting 
guess was unchanged but the value of w was changed drastically to 0.4. Then s was 
found in about 50 iterations. 

3. APPLICATION TO PHASE-TRANSITIONS IN FINITE NUCLEI 

The decay of heavy nuclei after bombardment by ultrarelativistic protons 
(E, > 10 GeV) can be described by a statistical model (Gross et al. [S]). It is 
assumed that every open multi-fragment decay channel is equally populated. In this 
picture the dissociation of the nuclei into various fragments is equivalent to the 
equilibrium of a finite system of nucleons under short range forces (nuclear) and 
long range forces (Coulomb). The short range forces lead to a condensation of the 
nucleons into drops (nuclei) which coexist with a free-nucleon gas. Such a system 
has a complicated phase structure. It is found that there is a pronounced and sharp 
phase transition of first order (Sa and Gross [6]). The phase transition points can 
be most easily determined in a mean field approximation. 

The Coulomb interaction of a fragment i with the rest of the system in a given 
decay-channel c1 is 

(3.1) 
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where n; gives the number (0, 1) of fragment nuclei k # i together with nucleus i in 
the channel CI, Zi is the proton number of nucleus i and ri its position. In the mean 
field approximation one replaces ni by its average value in all channels (nk)i. This 
is further approximated by the single-particle distribution ( nk ): 

(nk>,= (nk)4 for Zj + Z, < Z,,,,, 

=o for Zi + Zk > Z,,,,, . (3.2) 

cli is determined by the charge conservation 

c zk(nk)i=ztotal-zi~ 
k#t 

(3.3) 

In [S] it is shown that the mean number of nuclei (n,) of kind i is then determined 
by the following coupled set of N nonlinear equations 

(ni)=gi((nl)~...9 CnN)) 

k!;((fl,>,-., (n,))=exPCyj+lj{~LNNi+-I1,Zi 

- ~~“‘((~l >,..., hv>)l (3.4) 

with 

Q ’ ti(8) exPCBBi1 (3.5) 

/I=;. (3.6) 

Here Mi is the mass, Ni the neutron number, ti the number of internal states 
excited, Bi the binding energy of the fragment-nucleus i, T is the temperature and Q 
the volume of the system at the point of decay. 

The mean numbers (n,) and the chemical potentials pLN, ,D~ must be determined 
from Eqs. (3.4) and the constraints 

C Ni(ni> = Ntota17 

(3.7) 

C Zi(n, > = Ztotal~ 

The set of Eqs. (3.4) are coupled via the Coulomb interaction vu’ 
((n,),..., (nN)). In the decay of an uranium nucleus about 3000 different nuclei, i 
can be formed. In this case (3.4) is a set of 3000 coupled nonlinear equations. It is 
difficult to solve this by an ordinary Newton method because we have to solve a 
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3000 x 3000 dimensional linear equation at each iteration. Very effectively, we used 
the method of successive overrelaxation discussed in Section 2. We set 

x;= (n;) 

fib, ,..-, x,1= gi((n,),.-, (niv))- (4). 

With w = 0.6 we were able to solve the set (3.4) within about forty (!) iterations and 
obtained a solution (n,> such that for most of the parameters Q, T we have 

-- 
v=c iI 

(n,> - gi(Cnt >v*.*Y CnN)) -- 
I 

’ < 10-6 
gi((nl)9.-9 CnN)) 

(3.9) 

The equations were ordered according to descending fragment masses Ai = Zi + Ni. 
This has the advantage that the first equations needed only a few (nk ) because of 
the triangular conditions (3.2). The starting values of (n,) were calculated by 
assuming a pure binary (fission) decay. I.e., in formula (3.2) we set ( nk)i = 1 for 
Zk + Zi = Ztotal, iVk + Ni = Ntota, , and zero otherwise. 

There were characteristic regions in 0, T, where the set of Eqs. (3.4) converged 
very slowly or not at all. This happened in the neighborhood of the phase-transition 
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FIG. 1. Excitation energy of an Au-system at -4 normal nuclear density as a function of the tem- 
perature T. At about T-5 MeV the system has a phase transition of first order with a latent heat of 
-46 MeV. Here the system of equations becomes unstable and two solutions are obtained. The lines are 
to guide the eye. The solutions which we found are indicated by dots. The accuracy of the energy is of 
the order of 10-l everywhere. 
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FIG. 2. Distributions of the fragment masses in absolute cross sections at T= 4.86 MeV. The mean 
multiplicities (n,) defined in the text can be obtained by dividing the cross section by the total cross sec- 
tion CT = 46. A0.69 = 1.76. lo3 [mb]. I.e., the (q) vary between 5. 10e5 and - 2. The accuracy obtained 
in 80 steps is q = 7.8. 10m6. This type of mass distribution is characteristic for the lower branch (lower 
phase) in Fig. 1. It varies only smoothly along the lower curve. 
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FIG. 3. The same as in Fig. 2 but now with T=4.88 MeV. Observe the sharp change of the dis- 
tribution for medium masses by about 3 orders of magnitude. The accuracy obtained in 80 steps is q = 
1.5. lo-‘. This type of mass distribution is characteristic for the upper branch (upper phase) in Fig. 1. It 
varies only smoothly along the upper curve. 
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points of the system. Here our physical system has large fluctuations [6] and a 
mean field calculation tends to become unstable. Very often, a random ensemble for 
o out of I= (0.3, 1.3) produced fast convergence in these cases also. To illustrate 
the power of our method at such a most difficult point, we present the results for 
values of Q, T close to a phase-transition point for the decay of an Au-system (see 
Fig. 1). At temperatures between TN 4.86 MeV and w 5.1 MeV and at a density of 
about $-t the normal nuclear density (the parameters r0 defined in [S] are chosen 
as rot = 2.45 fm, r,, = 1.5 fm) the mean excitation energy E* jumps by -46 MeV. 
The mass distribution of the fragments, which is deeply U-shaped and varies only 
slowly for all T-c 4.86 MeV, jumps to one which has a “fission peak” at about half 
the mass of the system for T > 5.1 MeV (Figs. 2, 3). The latent heat is connected to 
a sudden opening of the “fission” channel. The physical implications of these phase 
transitions are further discussed in [S, 61. From the point of view of the numerical 
method it is interesting that, even within the range of the phase transition, we could 
get a convergence to one of the two possible solutions or both in about 80 steps up 
to an accuracy qk IO-‘. 
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